Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600569

RESUMO

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Assuntos
Proteínas dos Microfilamentos , Microglia , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas de Transporte , Gliose/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
2.
Curr Protoc ; 4(4): e1011, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648070

RESUMO

Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000-µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT-MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force-displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Mouse brain sample preparation Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT-MTA03 Micromechanical Testing and Assembly System Basic Protocol 3: Tissue stiffness identification from force-displacement data.

3.
Small Methods ; : e2400251, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607949

RESUMO

The advent of biomedical applications of soft bioinspired materials has entailed an increasing demand for streamlined and expedient characterization methods meant for both research and quality control objectives. Here, a novel measurement system for the characterization of biological hydrogels with volumes as low as 75 µL was developed. The system is based on an indentation platform equipped with micrometer drive actuators that allow the determination of both the fracture points and Young's moduli of relatively stiff polymers, including agarose, as well as the measurements of viscosity for exceptionally soft and viscous hydrogels, such as DNA hydrogels. The sensitivity of the method allows differentiation between DNA hydrogels produced by rolling circle amplification based on different template sequences and synthesis protocols. In addition, the polymerization kinetics of the hydrogels can be determined by time-resolved measurements, and the apparent viscosities of even more complex DNA-based nanocomposites can be measured. The platform presented here thus offers the possibility to characterize a broad variety of soft biomaterials in a targeted, fast, and cost-effective manner, holding promises for applications in fundamental materials science and ensuring reproducibility in the handling of complex materials.

4.
Materials (Basel) ; 17(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541399

RESUMO

The aim of this study was to compare the influence of heat treatment on fracture resistance (FR) of different ceramic materials used for CAD/CAM systems. METHODS: Eighty monolithic restorations were designed using the same parameters and milled with a CAD/CAM system (CEREC SW 5.0, PrimeMill, Dentsply-Sirona™, Bensheim, Germany), forming five study groups: Group 1 (n = 10), CEREC Tessera (Dentsply-Sirona™, Bensheim, Germany) crystallized (CCT), Group 2 (n = 10), CEREC Tessera uncrystallized (UCT), Group 3 (n = 20), Emax-CAD (Ivoclar Vivadent, Schaan, Liechtenstein) (CEC), Group 4 (n = 20), Vita Suprinity (Vita Zahnfabrik, Bad Säckingen, Germany) (CVS), and Group 5 (n = 20) Cameo (Aidite, Qinhuangdao, China) (CC). RESULTS: The average FR was similar for CCT, CC, and CEC at above 400 N, while CVS and UCT had the lowest values at 389,677 N and 343,212 N, respectively. CONCLUSION: Among the three ceramic materials that exhibited an FR above 400 N, CCT was considered the first recommended choice for CAD/CAM systems. This material not only demonstrated the highest FR but also exhibited outstanding consistency in the related measurements without the presence of outliers. Although the CC material showed high FR, its high dispersion revealed inconsistencies in the repetitions, suggesting caution in its use.

5.
J Mech Behav Biomed Mater ; 153: 106468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493561

RESUMO

A 2D plane strain extended finite element method (XFEM) model was developed to simulate three-point bending fracture toughness tests for human bone conducted in hydrated and dehydrated conditions. Bone microstructures and crack paths observed by micro-CT imaging were simulated using an XFEM damage model. Critical damage strains for the osteons, matrix, and cement lines were deduced for both hydrated and dehydrated conditions and it was found that dehydration decreases the critical damage strains by about 50%. Subsequent parametric studies using the various microstructural models were performed to understand the impact of individual critical damage strain variations on the fracture behavior. The study revealed the significant impact of the cement line critical damage strains on the crack paths and fracture toughness during the early stages of crack growth. Furthermore, a significant sensitivity of crack growth resistance and crack paths on critical strain values of the cement lines was found to exist for the hydrated environments where a small change in critical strain values of the cement lines can alter the crack path to give a significant reduction in fracture resistance. In contrast, in the dehydrated state where toughness is low, the sensitivity to changes in critical strain values of the cement lines is low. Overall, our XFEM model was able to provide new insights into how dehydration affects the micromechanisms of fracture in bone and this approach could be further extended to study the effects of aging, disease, and medical therapies on bone fracture.


Assuntos
Desidratação , Fraturas Ósseas , Humanos , Modelos Biológicos , Osso Cortical/diagnóstico por imagem , Osso e Ossos , Fraturas Ósseas/diagnóstico por imagem
6.
Bone ; 181: 117041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325648

RESUMO

Chronic heavy alcohol consumption may influence the skeleton by suppressing intracortical bone remodeling which may impact the quality of bone and its mechanical properties. However, this aspect has not been thoroughly assessed in either humans or animal models whose cortical bone microstructure resembles the microstructure of human cortical bone. The current study is the first to investigate the effects of chronic heavy alcohol consumption on various mechanical properties of bone in a non-human primate model with intracortical remodeling. Male rhesus macaques (5.3 years old at the initiation of treatment) were induced to drink alcohol and then given the choice to voluntarily self-administer water or ethanol (4 % w/v) for approximately 14 months, followed by three abstinence phases (lasting 34, 41, and 39-46 days) with approximately 3 months of ethanol access in between. During the initial 14 months of open-access, monkeys in the alcohol group consumed an average of 2.9 ± 0.8 g/kg/d ethanol (mean ± SD) resulting in a blood ethanol concentration of 89 ± 47 mg/dl in longitudinal samples taken at 7 h after the daily sessions began. To understand the impact of alcohol consumption on material properties, various mechanical tests were conducted on the distal tibia diaphysis of 2-5 monkeys per test group, including dynamic mechanical analysis (DMA) testing, nano-indentation, microhardness testing, compression testing, and fracture resistance curve (R-curve) testing. Additionally, compositional analyses were performed using Fourier-transform infrared (FTIR) spectroscopy. Significant differences in microhardness, compressive stress-strain response, and composition were not observed with alcohol consumption, and only minor differences were detected in hardness and elastic modulus of the matrix and osteons from nanoindentation. Furthermore, the R-curves of both groups overlapped, with similar crack initiation toughness, despite a significant decrease in crack growth toughness (p = 0.032) with alcohol consumption. However, storage modulus (p = 0.029) and loss factor (p = 0.015) from DMA testing were significantly increased in the alcohol group compared to the control group, while loss modulus remained unchanged. These results indicate that heavy alcohol consumption may have only a minor influence on the material properties and the composition of cortical bone in young adult male rhesus macaques.


Assuntos
Osso e Ossos , Osso Cortical , Animais , Masculino , Macaca mulatta , Consumo de Bebidas Alcoólicas , Etanol
7.
Sci Total Environ ; 921: 171111, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402965

RESUMO

Loess exhibits poor engineering properties, such as low strength and poor water stability. Conventional materials used for improving loess, such as cement and lime, result in environmental pollution issues throughout their production and application processes. To assess the efficacy of bio-based materials, including calcium alginate (CA), xanthan gum (XA), cotton fibers (CO) and flax fibers (FA) in the treatment of loess, the improved soil's strength, disintegration, and water resistance were examined. Subsequently, an optimal amendment approach was determined, and dry-wet cycle tests and microscopic observation were performed. The results show that 1.0 % calcium alginate can effectively enhance the strength of loess, significantly improving its resistance to disintegration with almost no observable disintegration; permeability is significantly reduced, and water repellency is enhanced. 2.0 % xanthan can improve the strength and disintegration resistance of loess, but the improvement in strength is lower than that of calcium alginate. Additionally, the improved soil with XA experiences a flocculent disintegration in static water, which cannot maintain the soil structure. Cotton fibers and flax fibers can enhance both compressive and tensile strength of the soil. The content of 0.45 % flax fibers is considered the optimal choice as it has no effect on water stability. Combining the above results, the combination of 1.0 % CA and 0.45 % FA has been selected to improve the loess, which effectively improves the comprehensive mechanical properties and water stability of the composite improved soil. The decrease in strength and mass loss rate are significantly reduced after dry-wet cycle tests. Microscopic tests show that calcium alginate connects soil particles by Ca2+ ionic bridges, which allows the cementing materials to fill the loess pores and exert the role of agglomeration and coagulation to enhance the integrity of the loess. This study shows that the bio-based material with calcium alginate as the main body can effectively improve the mechanical strength and water stability of the loess.

8.
Pharmaceutics ; 16(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399254

RESUMO

Dissolving microneedles (MNs) are novel transdermal drug delivery systems that can be painlessly self-administered. This study investigated the effects of experimental conditions on the mechanical characterization of dissolving MNs for quality evaluation. Micromolding was used to fabricate polyvinyl alcohol (PVA)-based dissolving MN patches with eight different cone-shaped geometries. Axial force mechanical characterization test conditions, in terms of compression speed and the number of compression needles per test, significantly affected the needle fracture force of dissolving MNs. Characterization using selected test conditions clearly showed differences in the needle fracture force of dissolving MNs prepared under various conditions. PVA-based MNs were divided into two groups that showed buckling and unbuckling deformation, which occurred at aspect ratios (needle height/base diameter) of 2.8 and 1.8, respectively. The needle fracture force of PVA-based MNs was negatively correlated with an increase in the needle's aspect ratio. Higher residual water or higher loading of lidocaine hydrochloride significantly decreased the needle fracture force. Therefore, setting appropriate methods and parameters for characterizing the mechanical properties of dissolving MNs should contribute to the development and supply of appropriate products.

9.
Biomimetics (Basel) ; 9(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392139

RESUMO

Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids' peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system.

10.
J Biomed Mater Res B Appl Biomater ; 112(1): e35356, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247241

RESUMO

Sterilization of structural bone allografts is a critical process prior to their clinical use in large cortical bone defects. Gamma irradiation protocols are known to affect tissue integrity in a dose dependent manner. Alternative sterilization treatments, such as supercritical carbon dioxide (SCCO2 ), are gaining popularity due to advantages such as minimal exposure to denaturants, the lack of toxic residues, superior tissue penetration, and minor impacts on mechanical properties including strength and stiffness. The impact of SCCO2 on the fracture toughness of bone tissue, however, remains unknown. Here, we evaluate crack initiation and growth toughness after 2, 6, and 24 h SCCO2 -treatment using Novakill™ and ethanol as additives on ~11 samples per group obtained from a pair of femur diaphyses of a canine. All mechanical testing was performed at ambient air after 24 h soaking in Hanks' balanced salt solution (HBSS). Results show no statistically significant difference in the failure characteristics of the Novakill™-treated groups whereas crack growth toughness after 6 and 24 h of treatment with ethanol significantly increases by 37% (p = .010) and 34% (p = .038), respectively, compared to an untreated control group. In contrast, standard 25 kGy gamma irradiation causes significantly reduced crack growth resistance by 40% (p = .007) compared to untreated bone. FTIR vibrational spectroscopy, conducted after testing, reveals a consistent trend of statistically significant differences (p < .001) with fracture toughness. These trends align with variations in the ratios of enzymatic mature to immature crosslinks in the collagen structure, suggesting a potential association with fracture toughness. Additional Raman spectroscopy after testing shows a similar trend with statistically significant differences (p < .005), which further supports that collagen structural changes occur in the SCF-treated groups with ethanol after 6 and 24 h. Our work reveals the benefits of SCCO2 sterilization compared to gamma irradiation.


Assuntos
Dióxido de Carbono , Fraturas Ósseas , Animais , Cães , Dióxido de Carbono/farmacologia , Etanol/farmacologia , Osso e Ossos , Osso Cortical , Colágeno/farmacologia
11.
Materials (Basel) ; 16(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005007

RESUMO

Cellular solids are materials made up of cells with solid edges or faces that are piled together to fit a certain space. These materials are already present in nature and have already been utilized in the past. Some examples are wood, cork, sponge and coral. New cellular solids replicating natural ones have been manufactured, such as honeycomb materials and foams, which have a variety of applications because of their special characteristics such as being lightweight, insulation, cushioning and energy absorption derived from the cellular structure. Cellular solids have interesting thermal, physical and mechanical properties in comparison with bulk solids: density, thermal conductivity, Young's modulus and compressive strength. This huge extension of properties allows for applications that cannot easily be extended to fully dense solids and offers enormous potential for engineering creativity. Their Low densities allow lightweight and rigid components to be designed, such as sandwich panels and large portable and floating structures of all types. Their low thermal conductivity enables cheap and reliable thermal insulation, which can only be improved by expensive vacuum-based methods. Their low stiffness makes the foams ideal for a wide range of applications, such as shock absorbers. Low strengths and large compressive strains make the foams attractive for energy-absorbing applications. In this work, their main properties, applications (real and potential) and recent developments are presented, summarized and discussed.

12.
J Mech Behav Biomed Mater ; 148: 106216, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924665

RESUMO

A human aorta from a female donor affected by Klippel-Trenaunay syndrome was retrieved during a surgery for organ donation for transplant. The aorta was preserved in refrigerated Belzer UW organ preservation solution and tested within a few hours for mechanical characterization with and without vascular smooth muscle activation. KCl and Noradrenaline were used as vasoactive agents in bubbled Krebs-Henseleit buffer solution at 37 °C. A quasi-static and a dynamic mechanical characterization of the full wall and the three individual layers were carried out for strips taken in longitudinal and circumferential directions. The full wall in the descending portion of the aorta underwent mechanical tests with and without smooth muscle activation. Results were compared to data obtained from healthy aortas and show a reduced stiffness of the full wall in circumferential direction. Also, a significant reduction of the response to vasoactive agents in circumferential direction was observed, while the longitudinal response was similar to healthy cases.


Assuntos
Aorta Torácica , Síndrome de Klippel-Trenaunay-Weber , Humanos , Feminino , Aorta Torácica/fisiologia , Aorta , Norepinefrina , Músculo Liso Vascular
13.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896424

RESUMO

Bio-based epoxy thermoset resins have been developed from epoxidized soybean oil (ESO) cured with tannic acid (TA). These two substances of vegetable origin have been gathering attention due to their accessibility, favorable economic conditions, and convenient chemical functionalization. TA's suitable high phenolic functionalization has been used to crosslink ESO by adjusting the -OH (from TA):epoxy (from ESO) molar ratio from 0.5:1 to 2.5:1. By means of Fourier-transform infrared spectroscopy, resulting in thermosets that evidenced optimal curing properties under moderate conditions (150-160 °C). The thermogravimetric analysis of the cured resins showed thermal stability up to 261 °C, with modulable mechanical and thermal properties determined by differential scanning calorimetry, dynamical mechanical thermal analysis, and tensile testing. Water contact angle measurements (83-87°) and water absorption tests (0.6-4.5 initial weight% intake) were performed to assess the suitability of the resins as waterproof coatings. Electrochemical impedance spectroscopy measurements were performed to characterize the anti-corrosive capability of these coatings on carbon steel substrates. Excellent barrier properties have been demonstrated due to the high electrical isolation and water impermeability of these oil-based coatings, without signs of deterioration over 6 months of immersion in a 3.5 wt.% NaCl solution. These results demonstrate the suitability of the developed materials as anti-corrosion coatings for specific applications.

14.
Angew Chem Int Ed Engl ; 62(49): e202312617, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851585

RESUMO

Covalent organic frameworks (COFs) are known to be a promising class of materials for a wide range of applications, yet their poor solution processability limits their utility in many areas. Here we report a pore engineering method using hydrophilic side chains to improve the processability of hydrazone and ß-ketoenamine-linked COFs and the production of flexible, crystalline films. Mechanical measurements of the free-standing COF films of COF-PEO-3 (hydrazone-linked) and TFP-PEO-3 (ß-ketoenamine-linked), revealed a Young's modulus of 391.7 MPa and 1034.7 MPa, respectively. The solubility and excellent mechanical properties enabled the use of these COFs in dielectric devices. Specifically, the TFP-PEO-3 film-based dielectric capacitors display simultaneously high dielectric constant and breakdown strength, resulting in a discharged energy density of 11.22 J cm-3 . This work offers a general approach for producing solution processable COFs and mechanically flexible COF-based films, which hold great potential for use in energy storage and flexible electronics applications.

15.
J Mech Behav Biomed Mater ; 147: 106137, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806278

RESUMO

This study questions the aging of non-implanted breast prostheses for a period of 9-60 months. Every 6 months, two non-implanted Natrelle™ prostheses were tested to measure the strength at break, the elongation at break, and the thickness of the shell. Then, the breaking stress was calculated from the preceding quantities. All these quantities were observed by separating the samples taken from the anterior and posterior sides of the prostheses. One-way ANOVA analyses (analysis of variance) were performed to define the influence of aging duration, lot membership, and side. In addition, the elongation at break and the thickness of the shell showed significant variations as a function of aging regardless of the side but without any trend emerging. For other quantities, there were significant disparities between the anterior and posterior sides of the prostheses, differences between prostheses from different lots, and similarities between prostheses from the same lot. Finally, the thickness is an important parameter. Since manufacturing is a manual process, it is necessary to check the thickness, which must be homogeneous on both sides. Always weaker on the anterior side than on the posterior side, it influences the mechanical properties. We recommend, like other studies, that its control be part of the quality controls during manufacturing.


Assuntos
Implantes de Mama , Próteses e Implantes
16.
Polymers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835907

RESUMO

Metamaterials are architected cellular materials, also known as lattice materials, that are inspired by nature or human engineering intuition, and provide multifunctional attributes that cannot be achieved by conventional polymeric materials and composites. There has been an increasing interest in the design, fabrication, and testing of polymeric metamaterials due to the recent advances in digital design methods, additive manufacturing techniques, and machine learning algorithms. To this end, the present review assembles a collection of recent research on the design, fabrication and testing of polymeric metamaterials, and it can act as a reference for future engineering applications as it categorizes the mechanical properties of existing polymeric metamaterials from literature. The research within this study reveals there is a need to develop more expedient and straightforward methods for designing metamaterials, similar to the implicitly created TPMS lattices. Additionally, more research on polymeric metamaterials under more complex loading scenarios is required to better understand their behavior. Using the right machine learning algorithms in the additive manufacturing process of metamaterials can alleviate many of the current difficulties, enabling more precise and effective production with product quality.

17.
Heliyon ; 9(9): e19792, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809613

RESUMO

Developing biocomposites by hybridization, which is the combination of two or more materials, can be a potential solution for improving material recyclability and sustainability. This study focuses on creating a hybrid biocomposite reinforced with cotton-blended pineapple leaf fibre (PALF) fabric (174 GSM) and jute fibre fabric (265 GSM) which are thrown away by textile factories. The mechanical, moisture absorption, and vibration characteristics of four stacking sequences of hybrid composites and two unhybridized composites were analyzed. Results indicated that hybridization improved tensile and flexural characteristics compared to pineapple leaf fibre reinforced polymer (PFRP) composites. The jute fibre reinforced polymer (JFRP) composite exhibited the maximum tensile strength of 35.16 MPa, while the hybrid composites achieved a maximum of 32.16 MPa. Among the hybrid composites, jute layers on the outer plies (4P5J-2) demonstrated the maximum tensile modulus of 1.315 GPa. Additionally, the hybrid composite with three layers of jute plies between alternating layers of jute-pineapple plies showed the highest elongation at 15.94%. Among the hybrids, alternate stacking of jute/PALF plies (4P5J-1) gave a maximum flexural strength of 44.36 MPa, which is similar to JFRP (44.91 MPa) and a 78.57% increase in flexural modulus compared to PFRP composite, despite having the lowest tensile strength. Although the JFRP composite exhibited the highest impact strength, the hybrids still outperformed the PFRP composites. With hybridization, moisture absorption decreased, with a maximum of 29.50% compared to the JFRP composite. Furthermore, due to the spiral-like orientation of the yarns, stacking PALF plies on the outside can cause critical damping. Therefore, it is shown in this paper that both hybridization and stacking sequence can significantly influence composite performance. These findings also implies the utilization of textile industry's natural fibres to develop hybrid composites for automotive applications, like brake and accelerator pedals, for a greener future and effective waste material utilization.

18.
Adv Mater Technol ; 8(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732106

RESUMO

Thermally cured thermoset polymers such as epoxies are widely used in industry and manufacturing due to their thermal, chemical, and electrical resistance, and mechanical strength and toughness. However, it can be challenging to 3D print thermally cured thermosets without rheological modification because they tend to flow and not hold their shape when extruded due to cure times of minutes to hours. 3D printing inside a support bath addresses this by allowing the liquid polymer to be held in place until the thermoset is fully cured and expands the structures that can be printed as extrusion is not limited to layer-by-layer. Here we report the use of Freeform Reversible Embedding (FRE) to 3D print off-the-shelf thermoset epoxy into lattice structures using non-planar extrusion. To do this we investigate how extrusion direction in 3D space impacts epoxy filament morphology and fusion at filament intersections. Further, we show the advantages of this approach by using non-planar printing to produce lattice geometries that show ~4 times greater specific modulus compared to lattice structures printed using other materials and printing techniques.

19.
Acta Biomater ; 172: 92-105, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748548

RESUMO

Human vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings. Despite their importance, the relationships between the microstructure of vocal folds and their resulting macroscopic properties remain poorly understood. There is a need for versatile models that encompass their structural complexity while mimicking their mechanical features. In this study, we present a candidate model inspired by histological measurements of the upper layers of human vocal folds. Bi-photonic observations were used to quantify the distribution, orientation, width, and volume fraction of collagen and elastin fibers between histological layers. Using established biomaterials, polymer fiber-reinforced hydrogels were developed to replicate the fibrillar network and ground substance of native vocal fold tissue. To achieve this, jet-sprayed poly(ε-caprolactone) fibrillar mats were successfully impregnated with poly(L-lysine) dendrimers/polyethylene glycol hydrogels. The resulting composites exhibited versatile structural, physical and mechanical properties that could be customized through variations in the chemical formulation of their hydrogel matrix, the microstructural architecture of their fibrous networks (i.e., fiber diameter, orientation and volume fraction) and their assembly process. By mimicking the collagen network of the lamina propria with polymer fibers and the elastin/ground substance with the hydrogel composition, we successfully replicated the non-linear, anisotropic, and viscoelastic mechanical behavior of the vocal-fold upper layers, accounting for inter/intra-individual variations. The development of this mimetic model offers promising avenues for a better understanding of the complex mechanisms involved in voice production. STATEMENT OF SIGNIFICANCE: Human vocal folds are outstanding vibrating soft living tissues allowing phonation. Simple physical models that take into account the histological structure of the vocal fold and recapitulate its mechanical features are scarce. As a result, the relations between tissue components, organisation and vibro-mechanical performances still remain an open question. We describe here the development and the characterization of fiber-reinforced hydrogels inspired from the vocal-fold microstructure. These systems are able to reproduce the mechanics of vocal-fold tissues upon realistic cyclic and large strains under various multi-axial loadings, thus providing a mimetic model to further understand the impact of the fibrous network microstructure in phonation.


Assuntos
Elastina , Prega Vocal , Humanos , Prega Vocal/patologia , Hidrogéis/química , Colágeno , Matriz Extracelular , Materiais Biocompatíveis
20.
Materials (Basel) ; 16(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570166

RESUMO

A comparison of the compressive behavior of Al honeycomb under pure normal stress and combined normal-shear stress was analyzed in this work. The typical working stress of honeycomb is a compressive load along the direction parallel to the axis of the cells. However, the component can also undergo shear stresses during operation, which can cause premature failure. This work analyzes the mechanical behavior in compression by normal stress (0°) and in conditions of combined normal-shear stress (at 15° and 25°) using a special pair of wedges. The samples were obtained from a 3000 series Al alloy sandwich panel and tested according to the ASTM C365/C365M-22 standard. The different deformation modes of the cells in the combined compression were examined for three angles (0, 15°, and 25°). A theoretical model of combined compression was used to derive the normal and tangential components starting from the total stress-strain curves. A compression curve analysis was conducted at different angles θ, allowing for considerations regarding changes in strength, absorbed energy, and deformations. Overall, as the load application angle increased, both the shear resistance of the honeycomb and its tangential displacement up to densification increased, which is the opposite of what occurs in normal behavior. The cell rotation angle was calculated as the load angle varied. The rotation angle of the cell increased with the displacement of the crosshead and the application angle of the force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...